viernes, 26 de agosto de 2011

Axioma de la Biologia


Abramos un paréntesis para ampliar nuestro conocimiento sobre la organización y la reproducción de los Biosistemas (un Biosistema es cualquier ser viviente). Éste es un tópico de gran importancia para la Biología que Usted no encontrará fácilmente en sus libros de texto.

En Biología, como en la Física y la Química, existen axiomas o principios que no pueden ser violados en el Universo Conocido. Estos principios obedecen sobre todo a las Leyes de la Termodinámica, a las cuales están sujetos todos los seres vivientes terrestres.

NASIF NAHLE SABAG
1. AXIOMA DE LA BIOGÉNESIS: En el tiempo presente, la vida sólo procede de la vida, la vida no puede originarse de materia inerte. Éste es el axioma biológico llamado Biogénesis.
Sin embargo, este axioma no es coherente si se toma en cuenta la nueva definición de vida a la luz de los nuevos descubrimientos. El axioma de la abiogénesis actual es así:

Los seres vivos sólo proceden de seres vivos preexistentes. Los seres vivos no pueden originarse de materia inerte dado que las condiciones para generarse en el planeta Tierra no se presentan en la actualidad (Campo Biótico).

La continuidad de la vida depende de la transmisión de las características hereditarias, las cuales residen en las moléculas de los ácidos nucleicos.

NASIF NAHLE SABAG
2. AXIOMA DE LA INTRANSFERENCIA DE LA VIDA: La vida no puede ser transferida, conferida o inducida a un sistema inerte, aún habiéndose tratado de un sistema anteriormente vivo, sino que solamente puede ser continuada a través de la secuencia reproductiva de un biosistema (Vea Campos Bióticos).

La vida solamente puede ser continuada a través de la generación de nuevos individuos a partir de individuos preexistentes. Ésto se logra a través de la reproducción, en la cual la perpetuación de la estructura molecular juega el rol más importante.

ASIF NAHLE SABAG
3. AXIOMA DE LA IRREPARABILIDAD DE LA VIDA: Una vez perturbado el estado térmico peculiar de un biosistema es imposible restaurarlo, ya sea por mecanismos naturales o por medio de los mecanismos tecnológicos conocidos. Ésto obedece a la irreversibilidad de la flecha del tiempo, a la cual está ligado todo incremento en la entropía global del Universo.

nasif nahle NAHLE SABAG
EVOLUCIÓN: Los seres vivientes actúan recíprocamente con su ambiente. Cuando las condiciones del entorno cambian, los organismos tienen que adaptarse a esos cambios. La evolución se refiere a los cambios que deben ocurrir en los organismos para que ellos se adapten a los cambios del ambiente. Para que esos cambios en el organismo sean considerados en el contexto de la adaptación evolutiva, ellos deben ocurrir en el ADN. De esta manera, el cambio será heredado a la progenie. (Para más detalles lea: Evolución)

Algunos autores incluyen más características de la vida, pero debido a que muchos biólogos consideran a los virus como seres vivos, sólo se describen los requisitos mínimos para la vida ya mencionados. (LEA ABAJO: CIERRE SOBRE LOS VIRUS)

NASIF NAHLE SABAG
Diferencias entre sistemas termodinámicos inertes y sistemas termodinámicos vivientes:

  • Los sistemas termodinámicos inertes capturan energía del ambiente, igual que lo hacen los sistemas termodinámicos vivientes; pero los sistemas termodinámicos inertes no demoran no-espontáneamente el aumento de los microestados hacia los cuales su energía interna puede dispersarse, mientras que los sistemas termodinámicos vivientes lo hacen no-espontáneamente.

  • Algunos sistemas termodinámicos inertes pueden continuar su estado cuántico al autoreplicarse, tal y como lo hacen los sistemas termodinámicos vivientes; pero los sistemas termodinámicos inertes no pueden preservar un número estable de microestados hacia los cuales su energía interna se difunde entre una y otra generación.

  • Algunas estructuras termodinámicas inertes pueden crecer, como lo hacen las estructuras termodinámicas vivas; pero los límites de su crecimiento no son tan precisos como los de los sistemas termodinámicos vivientes.

  • Algunas estructuras moleculares termodinámicas inertes evolucionan, como lo hacen las estructuras moleculares termodinámicas vivientes; pero los sistemas termodinámicos inertes evolucionan sólo a través de un número limitado de trayectorias, mientras que las estructuras moleculares termodinámicas vivientes son capaces de evolucionar a través de múltiples trayectorias. Esta diferencia obedece a la tendencia espontánea de todos los sistemas termodinámicos hacia el equilibrio. Los sistemas termodinámicos vivientes tienen más formas de eludir temporalmente esta tendencia que los sistemas termodinámicos inertes.
NASIF NAHLE SABAG
Esto último debe ser explicado mediante un ejemplo:

Considere a un sistema inerte que es puesto bajo una presión selectiva del ambiente, por ejemplo, una proteína expuesta a una temperatura de 50° C. Como un sistema inerte, la proteína cambiará su fase hacia otra fase conocida como desnaturalización, o a la fase de desintegración de su estructura molecular. Éstas serán las únicas trayectorias espontáneas de evolución disponibles para el sistema termodinámico inerte como una reacción ante la presión del ambiente. Esto será determinado por la tendencia espontánea universal hacia el equilibrio térmico.

Ahora considere un sistema termodinámico viviente, por ejemplo una bacteria. Cuando ella es expuesta a una temperatura de 50° C, ella responderá a través de muchos mecanismos espontáneos para defenderse de esa presión del ambiente. Uno de ellos es adoptando un estado denominada espora; otra manera consiste en la adaptación bioquímica a esa condición produciendo proteínas que toleren temperaturas más altas. Otra trayectoria consistirá en tratar de huir del área donde ocurre la presión, etc. Como hemos visto, sistemas termodinámicos vivientes también comparten la tendencia espontánea hacia el equilibrio térmico, sólo que ellos pueden bloquear esta tendencia espontánea durante períodos más largos que los sistemas termodinámicos inertes, porque los primeros tienen más formas disponibles para resolver el problema que los sistemas termodinámico inertes.



NASIF NAHLE SABAG
NIVELES DE ORGANIZACIÓN EN BIOLOGÍA

Podemos ver un orden Biológico en cada organismo existente, y podemos encontrar niveles de organización desde los átomos, hasta el mayor ser vivo. Los átomos se organizan para formar moléculas, las moléculas para formar células, las células para formar tejidos, los tejidos para formar órganos, los órganos para formar aparatos y sistemas, y éstos forman un total llamado ser vivo o individuo. Un grupo de individuos que comparten las mismas características genéticas (una especie) forma una población, un grupo de poblaciones diferentes constituyen una comunidad, las comunidades actúan recíprocamente con su ambiente para constituir un Ecosistema, la suma de todos ecosistemas y comunidades en la Tierra es la Biosfera. La Biosfera es el nivel de organización más grande en la Biología.

NASIF NAHLE SABAG
Nivel atómico: Un núcleo con masa y con uno o más niveles de energía (dependiendo de la clase de elemento de que se trate), con electrones girando a su alrededor, constituye a un átomo. El núcleo atómico contiene subpartículas de varios tipos, pero los de mayor importancia son los Protones, con una carga eléctrica positiva, y los Neutrones compuestos por subpartículas con cargas negativas y positivas electromagnéticas que se neutralizan unas a otras. Cada subpartícula (protones y neutrones) del núcleo cuenta con una masa atómica definida, pero para obtener un número atómico específico debemos considerar sólo la suma de electrones en ese átomo.

Por otra parte, los electrones poseen una carga eléctrica negativa. Ésto mantiene la estabilidad en los niveles diferentes de energía (determinado por medio de la ecuación de Schrödinger) donde los electrones "giran" de un nivel de la energía a otro.


NASIF NAHLE SABAG
Nivel molecular: Átomos de la misma clase (elemento) o de diferentes clases (compuesto) forman una molécula. Hay algunas moléculas elementales en la naturaleza formadas por sólo un átomo (moléculas monoatómicas), como el argón, el helio, el xenón, etc.

No obstante, la mayoría de las moléculas elementales están formadas por dos o más átomos, como el oxígeno, el hidrógeno, etc.

Cuando se combinan átomos diferentes para formar moléculas, las substancias resultantes son llamadas compuestos. Un ejemplo típico de compuesto es el agua. El agua está formada por un átomo de oxígeno y dos átomos de hidrógeno (H2O).

Hay dos clases de compuestos: los compuestos Orgánicos y los compuestos inorgánicos. Los orgánicos tienen átomos de carbono en su estructura (por ejemplo, el bióxido de carbono), en tanto que los compuestos inorgánicos no poseen átomos de carbono.

Las estructuras de los seres vivientes se construyen con compuestos orgánicos; es decir, por moléculas basadas en el elemento Carbono. Las moléculas orgánicas principales que se arman para construir la vida son los ácidos nucleicos, los carbohidratos, los lípidos y las proteínas. Estos cuatro tipos de compuestos se organizan para formar las estructuras de una célula.

No hay comentarios:

Publicar un comentario